encryption

For this question, we consider a cipher working on an alphabet consisting of 26 English characters (A-Z), plus underscore (_), comma (,) and full stop (.), which corresponds to integers 0 to 28. The encryption is done by:

$$c = E_2(E_1(p))$$

Here E_1 is the encryption function used in Hill cipher. The plaintext is processed successively in blocks of size m. The encryption algorithm takes a block with m plaintext digits (p_1, p_2, \ldots, p_m) and transforms into a cipher block of size m (c_1, c_2, \ldots, c_m) using a key matrix of size $m \times m$ by the linear transformation, which is given by:

$$c_{1} = (k_{1,1}p_{1} + k_{1,2}p_{2} + \dots + k_{1,m}p_{m}) \mod 29$$

$$c_{2} = (k_{2,1}p_{1} + k_{2,2}p_{2} + \dots + k_{2,m}p_{m}) \mod 29$$

$$\dots$$

$$c_{m} = (k_{m,1}p_{1} + k_{m,2}p_{2} + \dots + k_{m,m}p_{m}) \mod 29$$

 E_2 is the encryption function used in Vernam cipher. It processes a block of plaintext at a time, and produces a same length ciphertext. In this task, our Vernam cipher uses the same block size *m* as used in Hill cipher. The encryption is performed by:

$$c_1 = p_1 + K_1 \mod 29$$

$$c_2 = p_2 + K_2 \mod 29$$

$$\dots$$

$$c_m = p_m + K_m \mod 29$$

Note: For this question, correspondence between plaintext and number modulo

29 are as follows "*A*" \leftrightarrow 0, "*B*" \leftrightarrow 1, "*C*" \leftrightarrow 2, . . . , "*Z*" \leftrightarrow 25, " " \leftrightarrow 26, ", " \leftrightarrow 27 and "." \leftrightarrow 28. All following tasks use block size *m* = 5.

leak

For the encryption above $c = E_2(E_1(p))$, we got one plaintext and its ciphertext:

- p = ZQIUOMCEFZGVRGTBAAAAAJRTKENSNQ
- c = WUJQYGCAHAAAAGDPQXUXHIDTDLIRG

challenge

C = OKCZKNCSQ_ULYOKPKW,PL.UXIWX,YCLXZFGBM_SUJLSCOXZT.AIGFZRDCIX,

Please recover the secret from C, and the flag format is flag{secret}.

attention

The arrangement of the plaintext matrix is row first.